Part Number Hot Search : 
SMBJ43 P5N90 SK310 211YA KE300 SC241 0U60D 1N4751
Product Description
Full Text Search
 

To Download IRFB7437 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  hexfet   power mosfet benefits improved gate, avalanche and dynamic dv/dt ruggedness  fully characterized capacitance and avalanche soa  enhanced body diode dv/dt and di/dt capability  lead-free  rohs compliant, halogen-free* fig 1. typical on-resistance vs. gate voltage fig 2. maximum drain current vs. case temperature applications brushed motor drive applications  bldc motor drive applications  battery powered circuits  half-bridge and full-bridge topologies  synchronous rectifier applications  resonant mode power supplies  or-ing and redundant power switches  dc/dc and ac/dc converters  dc/ac inverters gds gate drain source to-220ab IRFB7437pbf s d g d 25 50 75 100 125 150 175 t c , case temperature (c) 0 50 100 150 200 250 i d , d r a i n c u r r e n t ( a ) limited by package v dss 40v r ds(on) typ. 1.5m max. 2.0m i d (silicon limited) 250a i d (package limited) 195a 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 v gs , gate-to-source voltage (v) 0 1 2 3 4 5 6 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ) t j = 25c t j = 125c i d = 100a d s g  
  form quantity IRFB7437pbf to-220 tube 50 IRFB7437pbf base part number package type standard pack orderable part number     
  
           
  downloaded from: http:///
    
  
           
  
   calculated continuous current based on maximum allowable junctiontemperature. bond wire current limit is 195a. note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements.  
  repetitive rating; pulse width limited by max. junctiontemperature.  limited by t jmax , starting t j = 25c, l = 0.069mh r g = 50 , i as = 100a, v gs =10v.  i sd 100a, di/dt 1166a/ s, v dd v (br)dss , t j 175c.  pulse width 400 s; duty cycle 2%.  c oss eff. (tr) is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .  c oss eff. (er) is a fixed capacitance that gives the same energy as c oss while v ds is rising from 0 to 80% v dss .      
limited by t jmax starting t j = 25c, l= 1mh, r g = 50 , i as = 40a, v gs =10v. halogen -free since april 30, 2014 absolute maximum ratings symbol parameter units i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 100c continuous drain current, v gs @ 10v (silicon limited) i d @ t c = 25c continuous drain current, v gs @ 10v (wire bond limited) i dm pulsed drain current p d @t c = 25c maximum power dissipation w linear derating factor w/c v gs gate-to-source voltage v t j operating junction and t st g storage temperature range soldering temperature, for 10 seconds (1.6mm from case) mounting torque, 6-32 or m3 screw avalanche characteristics e as (thermally limited) single pulse avalanche energy  mj e as (thermally limited) single pulse avalanche energy  i ar avalanche current  a e ar repetitive avalanche energy mj thermal resistance symbol parameter typ. max. units r jc junction-to-case  CCC 0.65 r cs case-to-sink, flat greased surface 0.50 CCC r ja junction-to-ambient  CCC 62 c/w a c 300350 see fig. 14, 15, 22a, 22b 230 max. 250  180 1000 195802 -55 to + 175 20 1.5 10lbf  in (1.1n  m) static @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units v (br)dss drain-to-source breakdown voltage 40 CCC CCC v v (br)dss / t j breakdown voltage temp. coefficient CCC 0.029 CCC v/c r ds(on) static drain-to-source on-resistance CCC 1.5 2.0 m CCC 1.8 CCC v gs(th) gate threshold voltage 2.2 3.0 3.9 v i dss drain-to-source leakage current CCC CCC 1.0 a CCC CCC 150 i gss gate-to-source forward leakage CCC CCC 100 na gate-to-source reverse leakage CCC CCC -100 r g internal gate resistance CCC 2.2 CCC v ds = 40v, v gs = 0v v ds = 40v, v gs = 0v, t j = 125c v gs = 20v v gs = -20v conditions v gs = 0v, i d = 250 a reference to 25c, i d = 1ma v gs = 10v, i d = 100a v gs = 6.0v, i d = 50a v ds = v gs , i d = 150 a downloaded from: http:///
    
  
           
  
 dynamic @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units gfs forward transconductance 160 CCC CCC s q g total gate charge CCC 150 225 nc q gs gate-to-source charge CCC 41 CCC q gd gate-to-drain ("miller") charge CCC 51 CCC q sync total gate charge sync. (q g - q gd ) CCC 99 CCC t d(on) turn-on delay time CCC 19 CCC ns t r rise time CCC 70 CCC t d(off) turn-off delay time CCC 78 CCC t f fall time CCC 53 CCC c iss input capacitance CCC 7330 CCC pf c oss output capacitance CCC 1095 CCC c rss reverse transfer capacitance CCC 745 CCC c oss eff. (er) effective output capacitance (energy related)  CCC 1310 CCC c oss eff. (tr) effective output capacitance (time related)  CCC 1735 CCC diode characteristics symbol parameter min. typ. max. units i s continuous source current CCC CCC 250  a (body diode) i sm pulsed source current CCC CCC 1000 a (body diode)  v sd diode forward voltage CCC 1.0 1.3 v dv/dt peak diode recovery  CCC 3.1 CCC v/ns t rr reverse recovery time CCC 30 CCC ns t j = 25c v r = 34v, CCC 30 CCC t j = 125c i f = 100a q rr reverse recovery charge CCC 24 CCC nc t j = 25c di/dt = 100a/ s  CCC 25 CCC t j = 125c i rrm reverse recovery current CCC 1.3 CCC a t j = 25c t j = 175c, i s = 100a, v ds = 40v  i d = 30a r g = 2.7 v dd = 20v conditions v gs = 10v  v gs = 0v v ds = 25v ? = 1.0 mhz, see fig. 5 v gs = 0v, v ds = 0v to 32v , see fig. 11 v gs = 0v, v ds = 0v to 32v  t j = 25c, i s = 100a, v gs = 0v  integral reverse p-n junction diode. mosfet symbol showing the v gs = 10v  i d = 100a, v ds =20v, v gs = 10v conditions v ds = 10v, i d = 100a i d = 100a v ds =20v d s g downloaded from: http:///
    
  
           
  
 fig 3. typical output characteristics fig 5. typical transfer characteristics fig 6. normalized on-resistance vs. temperature fig 4. typical output characteristics fig 8. typical gate charge vs. gate-to-source voltage fig 7. typical capacitance vs. drain-to-source voltage 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v 60 s pulse width tj = 25c 4.5v 0.1 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v 60 s pulse width tj = 175c 4.5v -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 100a v gs = 10v 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0 40 80 120 160 200 q g total gate charge (nc) 0 2 4 6 8 10 12 14 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 32v v ds = 20v i d = 100a 3 4 5 6 7 8 v gs , gate-to-source voltage (v) 1.0 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t j = 25c t j = 175c v ds = 10v 60 s pulse width downloaded from: http:///
    
  
           
  
 fig 10. maximum safe operating area fig 11. drain-to-source breakdown voltage fig 9. typical source-drain diode forward voltage fig 12. typical c oss stored energy fig 13. typical on-resistance vs. drain current 0.0 0.5 1.0 1.5 2.0 2.5 v sd , source-to-drain voltage (v) 0.1 1 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , temperature ( c ) 40 42 44 46 48 50 v ( b r ) d s s , d r a i n - t o - s o u r c e b r e a k d o w n v o l t a g e ( v ) id = 1.0ma 0 10 20 30 40 50 v ds, drain-to-source voltage (v) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 e n e r g y ( j ) 0.1 1 10 v ds , drain-tosource voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec 100 sec dc operation in this area limited by r ds (on) limited by package 0 100 200 300 400 500 i d , drain current (a) 1 2 3 4 5 6 7 8 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ) v gs = 5.5v v gs = 6.0v v gs = 7.0v vgs = 8.0v vgs = 10v downloaded from: http:///
 !   
  
           
  
 fig 14. maximum effective transient thermal impedance, junction-to-case fig 15. typical avalanche current vs.pulsewidth fig 16. maximum avalanche energy vs. temperature notes on repetitive avalanche curves , figures 14, 15:(for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far inexcess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 22a, 22b.4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 14, 15).t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figures 13) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.0001 0.001 0.01 0.1 1 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) allowed avalanche current vs avalanche pulsewidth, tav, assuming ? j = 25c and tstart = 150c. (single pulse) allowed avalanche current vs avalanche pulsewidth, tav, assuming tj = 150c and tstart =25c (single pulse) 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 50 100 150 200 250 300 350 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1% duty cycle i d = 100a downloaded from: http:///
 "   
  
           
  
  #$%& 
'%('  ) fig 17. threshold voltage vs. temperature 
#$%& 
(*'  )  #$%& 
'%('  )   #$%& 
(*'  ) -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 v g s ( t h ) , g a t e t h r e s h o l d v o l t a g e ( v ) i d = 150 a i d = 1.0ma i d = 1.0a 0 200 400 600 800 1000 di f /dt (a/ s) 0 2 4 6 8 10 i r r ( a ) i f = 100a v r = 34v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/ s) 0 2 4 6 8 10 i r r ( a ) i f = 60a v r = 34v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/ s) 0 20 40 60 80 100 120 140 q r r ( n c ) i f = 60a v r = 34v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/ s) 0 20 40 60 80 100 120 140 q r r ( n c ) i f = 100a v r = 34v t j = 25c t j = 125c downloaded from: http:///
 +   
  
           
  
 fig 24a. switching time test circuit fig 24b. switching time waveforms fig 23b. unclamped inductive waveforms fig 23a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 t p d.u.t l v ds + - v dd driver a 15v 20v v gs fig 25a. gate charge test circuit fig 25b. gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr fig 22. ,

'%')$(  for n-channel hexfet   power mosfets  
     ? 
     ?     ?

         p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-appliedvoltage reverserecovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period - !  "#! $ %&$'('& - + - + + + - - -      !  ?      !  ?   " #$## ?        %  && ? #$##'$

   d.u.t. v ds i d i g 3ma v gs .3 f 50k .2 f 12v current regulator same type as d.u.t. current sampling resistors + - v ds 90%10% v gs t d(on) t r t d(off) t f !  ( ) 1 *  %   0.1 %   !    () ! + - !  !  downloaded from: http:///
 .   
  
           
  
 
     
     to-220ab packages are not recommended for surface mount application.  
          
     downloaded from: http:///
    
  
           
  
 ir world headquarters: 101 n. sepulveda blvd., el segundo, california 90245, usa to contact international rectifier, please visit http://www.irf.com/whoto-call/ / 0 
 

 12 &2))
)&
 #
)%) //3&& '

455( 
&
  qualification level moisture sensitivity level to-220 not applicable rohs compliant (per jedec jesd47f ?? guidelines) yes qualification information ? industrial revision history date comment ? updated data sheet with new ir corporate template. ? updated typo on the fig.19 and fig.21, unit of y-axis from "a" to "nc" on page7. ? updated package outline and part marking on page 9. ? added bullet point in the benefits "rohs compliant, halogen -free" on page 1. ? updated e as (l =1mh) = 802mj on page 2 ? updated note 9 limited by t jmax , starting t j = 25c, l = 1mh, r g = 50 , i as = 40a, v gs =10v. on page 2 4/22/2014 1/6/2015 downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of IRFB7437

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X